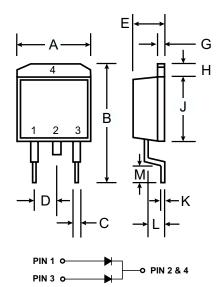


MBRB1530CT - MBRB1545CT


15A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER

Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- Low Power Loss, High Efficiency
- High Surge Capability
- High Current Capability and Low Forward Voltage Drop
- Surge Overload Rating to 150A Peak
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications
- Plastic Material UL Flammability Classification 94V-0

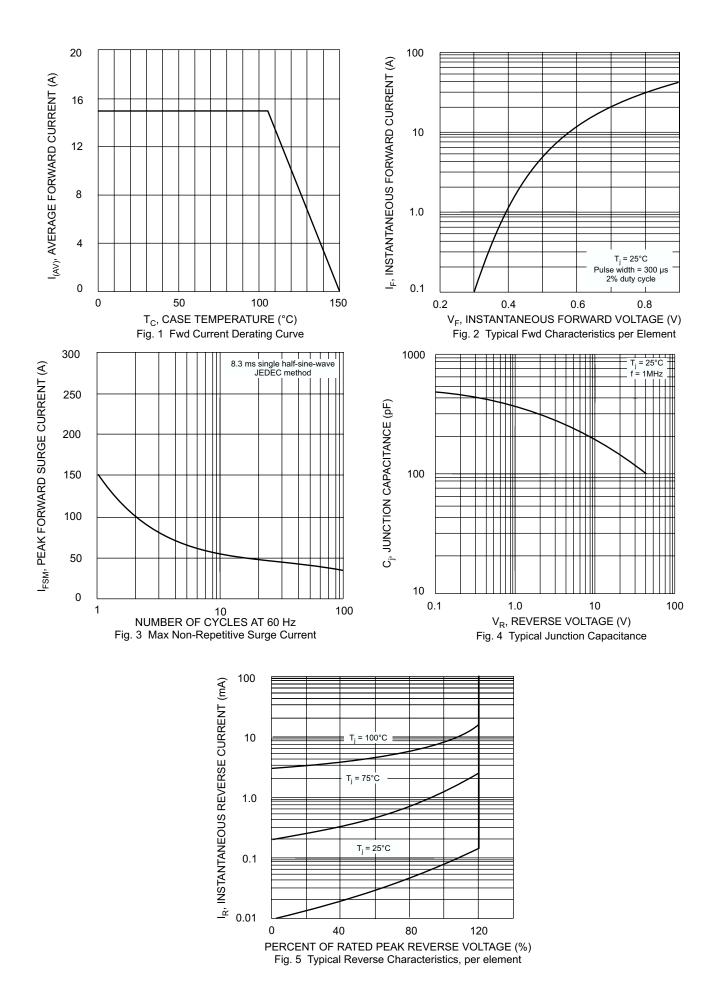
Mechanical Data

- Case: D²PAK Molded Plastic
- Terminals: Solderable per MIL-STD-202, Method 208
- Polarity: See Diagram
- Approx. Weight: 1.7 grams
- Mounting Position: Any
- Marking: Type Number

D ² PAK					
Dim	Min Max				
Α	9.65	10.69			
В	14.60	15.88			
С	0.51	1.14			
D	2.29	2.79			
Е	4.37	4.83			
G	1.14	1.40			
н	1.14	1.40			
J	8.25	9.25			
К	0.30	0.64			
L	2.03	2.92			
М	2.29	2.79			
All Dimensions in mm					

Maximum Ratings and Electrical Characteristics @ T_A = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


Characteristic	Symbol	MBRB 1530CT	MBRB 1535CT	MBRB 1540CT	MBRB 1545CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	35	40	45	v
RMS Reverse Voltage	V _{R(RMS)}	21	24.5	28	31.5	V
Average Rectified Output Current $@ T_C = 105^{\circ}C$	nt @ $T_{\rm C} = 105^{\circ}{\rm C}$ $I_{\rm O}$ 15			А		
Non-Repetitive Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM}	150				А
Forward Voltage, per Element (Note 4) $@$ I _F = 7.5A	V _{FM}	0.7			V	
Voltage Rate of Change	dv/dt	10,000			V/µs	
Peak Reverse Current $@T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	I _{RM}	0.1 15			mA	
Maximum Recovery Time (Note 3)	t _{rr}	30			ns	
Typical Junction Capacitance (Note 2)	Cj	250				pF
Typical Thermal Resistance Junction to Terminal (Note 1)	R _{θJT}	3.0			K/W	
Operating and Storage Temperature Range	T _{j,} T _{STG}	-65 to +150			°C	

Notes: 1. Thermal resistance: junction to terminal, unit mounted on PC board with 5.0 mm² (0.013 mm thick) copper pad as heat sink.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.

3. Reverse recovery test conditions: $I_F = 0.5A$, $I_R = 1.0A$, $I_{rr} = 0.25A$ (see figure 1).

4. 300 μs pulse width, 2% duty cycle.

